--[[ TechAge ======= Copyright (C) 2019 Joachim Stolberg LGPLv2.1+ See LICENSE.txt for more information Power distribution and consumption calculation for any kind of power distribution network ]]-- -- for lazy programmers local S = function(pos) if pos then return minetest.pos_to_string(pos) end end local P = minetest.string_to_pos local M = minetest.get_meta -- Techage Related Data local PWR = function(pos) return (minetest.registered_nodes[minetest.get_node(pos).name] or {}).power end local PWRN = function(node) return (minetest.registered_nodes[node.name] or {}).power end -- Used to determine the already passed nodes while power distribution local Route = {} local function in_range(val, min, max) if val < min then return min end if val > max then return max end return val end local function pos_already_reached(pos) local key = minetest.hash_node_position(pos) if not Route[key] then Route[key] = true return false end return true end local SideToDir = {B=1, R=2, F=3, L=4, D=5, U=6} local function side_to_dir(param2, side) local dir = SideToDir[side] if dir < 5 then dir = (((dir - 1) + (param2 % 4)) % 4) + 1 end return dir end function techage.get_pos(pos, side) local node = minetest.get_node(pos) local dir = nil if node.name ~= "air" and node.name ~= "ignore" then dir = side_to_dir(node.param2, side) end return tubelib2.get_pos(pos, dir) end local function set_conn_dirs(pos, sides) local tbl = {} local node = minetest.get_node(pos) if type(sides) == "function" then tbl = sides(pos, node) else for _,side in ipairs(sides) do tbl[#tbl+1] = tubelib2.Turn180Deg[side_to_dir(node.param2, side)] end end M(pos):set_string("power_dirs", minetest.serialize(tbl)) end local function valid_indir(pos, in_dir) local s = M(pos):get_string("power_dirs") if s == "" then local pwr = PWR(pos) if pwr then set_conn_dirs(pos, pwr.conn_sides) end end if s ~= "" then for _,dir in ipairs(minetest.deserialize(s)) do if dir == in_dir then return true end end end return false end local function valid_outdir(pos, out_dir) return valid_indir(pos, tubelib2.Turn180Deg[out_dir]) end -- Both nodes are from the same power network type? local function matching_nodes(pos, peer_pos) local tube_type1 = pos and PWR(pos) and PWR(pos).power_network.tube_type local tube_type2 = peer_pos and PWR(peer_pos) and PWR(peer_pos).power_network.tube_type return not tube_type1 or not tube_type2 or tube_type1 == tube_type2 end local function connection_walk(pos, clbk) local mem = tubelib2.get_mem(pos) mem.interrupted_dirs = mem.interrupted_dirs or {} if clbk then clbk(pos, mem) end for out_dir,item in pairs(mem.connections or {}) do if item.pos and not pos_already_reached(item.pos) and not mem.interrupted_dirs[out_dir] then connection_walk(item.pos, clbk) end end end -- determine one "generating" node as master (largest hash number) local function determine_master(pos) Route = {} pos_already_reached(pos) local hash = 0 local master = nil connection_walk(pos, function(pos, mem) if mem.generating then local new = minetest.hash_node_position(pos) if hash <= new then hash = new master = pos end end end) return master end -- store master position on all network nodes local function store_master(pos, master_pos) Route = {} pos_already_reached(pos) connection_walk(pos, function(pos, mem) mem.master_pos = master_pos mem.is_master = false end) end -- called from any generator local function on_power_switch(pos) print("on_power_change"..S(pos)) local mem = tubelib2.get_mem(pos) mem.master_pos = nil mem.is_master = nil local mpos = determine_master(pos) store_master(pos, mpos) if mpos then print("master = "..S(mpos)) local mem = tubelib2.get_mem(mpos) mem.is_master = true return mem end end local function min(val, max) if val < 0 then return 0 end if val > max then return max end return val end -- called from master every 2 seconds local function accounting(mem) -- defensive programming mem.needed1 = mem.needed1 or 0 mem.needed2 = mem.needed2 or 0 mem.available1 = mem.available1 or 0 mem.available2 = mem.available2 or 0 -- calculate the primary and secondary supply and demand mem.supply1 = min(mem.needed1 + mem.needed2, mem.available1) mem.demand1 = min(mem.needed1, mem.available1 + mem.available2) mem.supply2 = min(mem.demand1 - mem.supply1, mem.available2) mem.demand2 = min(mem.supply1 - mem.demand1, mem.available1) mem.reserve = (mem.available1 + mem.available1) > mem.needed1 print("needed = "..mem.needed1.."/"..mem.needed2..", available = "..mem.available1.."/"..mem.available2) print("supply = "..mem.supply1.."/"..mem.supply2..", demand = "..mem.demand1.."/"..mem.demand2..", reserve = "..dump(mem.reserve)) -- reset values for nect cycle mem.needed1 = 0 mem.needed2 = 0 mem.available1 = 0 mem.available2 = 0 end -- called from tubelib2.after_tube_update local function on_network_change(pos) local mem = on_power_switch(pos) if mem then accounting(mem) end end -- -- Generic API functions -- techage.power = {} techage.power.power_switched = on_power_switch techage.power.on_network_change = on_network_change -- Used to turn on/off the power by means of a power switch function techage.power.power_cut(pos, dir, cable, cut) local npos = vector.add(pos, tubelib2.Dir6dToVector[dir or 0]) local node = minetest.get_node(npos) if node.name ~= "techage:powerswitch_box" and M(npos):get_string("techage_hidden_nodename") ~= "techage:powerswitch_box" then return end local mem = tubelib2.get_mem(npos) mem.interrupted_dirs = mem.interrupted_dirs or {} if cut then mem.interrupted_dirs = {true, true, true, true, true, true} for dir,_ in pairs(mem.connections) do mem.interrupted_dirs[dir] = false on_power_switch(npos) mem.interrupted_dirs[dir] = true end else mem.interrupted_dirs = {} on_power_switch(npos) end end function techage.power.register_node(names, pwr_def) for _,name in ipairs(names) do local ndef = minetest.registered_nodes[name] if ndef then minetest.override_item(name, { power = { conn_sides = pwr_def.conn_sides or {"L", "R", "U", "D", "F", "B"}, power_network = pwr_def.power_network, after_place_node = ndef.after_place_node, after_dig_node = ndef.after_dig_node, after_tube_update = ndef.after_tube_update, }, -- after_place_node decorator after_place_node = function(pos, placer, itemstack, pointed_thing) local pwr = PWR(pos) set_conn_dirs(pos, pwr.conn_sides) pwr.power_network:after_place_node(pos) if pwr.after_place_node then return pwr.after_place_node(pos, placer, itemstack, pointed_thing) end end, -- after_dig_node decorator after_dig_node = function(pos, oldnode, oldmetadata, digger) local pwr = PWRN(oldnode) pwr.power_network:after_dig_node(pos) minetest.after(0.1, tubelib2.del_mem, pos) -- At latest... if pwr.after_dig_node then return pwr.after_dig_node(pos, oldnode, oldmetadata, digger) end end, -- tubelib2 callback, called after any connection change after_tube_update = function(node, pos, out_dir, peer_pos, peer_in_dir) local pwr = PWR(pos) local mem = tubelib2.get_mem(pos) mem.connections = mem.connections or {} if not peer_pos or not valid_indir(peer_pos, peer_in_dir) or not valid_outdir(pos, out_dir) or not matching_nodes(pos, peer_pos) then mem.connections[out_dir] = nil -- del connection else mem.connections[out_dir] = {pos = peer_pos, in_dir = peer_in_dir} end -- To be called delayed, so that all network connections have been established minetest.after(0.2, on_network_change, pos) if pwr.after_tube_update then return pwr.after_tube_update(node, pos, out_dir, peer_pos, peer_in_dir) end end, }) pwr_def.power_network:add_secondary_node_names({name}) end end end function techage.power.consume_power(pos, needed) local master_pos = tubelib2.get_mem(pos).master_pos if master_pos then local mem = tubelib2.get_mem(master_pos) -- for next cycle mem.needed1 = (mem.needed1 or 0) + needed -- current cycle mem.demand1 = mem.demand1 or 0 local val = math.min(needed, mem.demand1) mem.demand1 = mem.demand1 - val return val end return 0 end function techage.power.provide_power(pos, provide) local mem = tubelib2.get_mem(pos) if mem.is_master then accounting(mem) elseif mem.master_pos then mem = tubelib2.get_mem(mem.master_pos) else return 0 end -- for next cycle mem.available1 = (mem.available1 or 0) + provide -- current cycle mem.supply1 = mem.supply1 or 0 local val = math.min(provide, mem.supply1) mem.supply1 = mem.supply1 - val return val end function techage.power.secondary_power(pos, provide, needed) local mem = tubelib2.get_mem(pos) if mem.is_master then accounting(mem) elseif mem.master_pos then mem = tubelib2.get_mem(mem.master_pos) else return 0 end -- for next cycle mem.available2 = (mem.available2 or 0) + provide mem.needed2 = (mem.needed2 or 0) + needed -- defensive programming mem.supply2 = mem.supply2 or 0 mem.demand2 = mem.demand2 or 0 -- check as generator if mem.supply2 > 0 then local val = math.min(provide, mem.supply2) mem.supply2 = mem.supply2 - val return val end -- check as consumer if mem.demand2 > 0 then local val = math.min(needed, mem.demand2) mem.demand2 = mem.demand2 - val return -val end return 0 end function techage.power.power_available(pos) local mem = tubelib2.get_mem(pos) if mem.is_master then return mem.reserve elseif mem.master_pos then mem = tubelib2.get_mem(mem.master_pos) return mem.reserve else return false end end function techage.power.percent(max_val, curr_val) return math.min(math.ceil(((curr_val or 0) * 100.0) / (max_val or 1.0)), 100) end function techage.power.formspec_load_bar(charging, max_val) local percent charging = charging or 0 max_val = max_val or 1 if charging ~= 0 then percent = 50 + math.ceil((charging * 50.0) / max_val) end if charging > 0 then return "techage_form_level_off.png^[lowpart:"..percent..":techage_form_level_charge.png" elseif charging < 0 then return "techage_form_level_unload.png^[lowpart:"..percent..":techage_form_level_off.png" else return "techage_form_level_off.png" end end function techage.power.formspec_power_bar(max_power, current_power) local percent = techage.power.percent(max_power, current_power) return "techage_form_level_bg.png^[lowpart:"..percent..":techage_form_level_fg.png" end function techage.power.side_to_outdir(pos, side) local node = minetest.get_node(pos) return side_to_dir(node.param2, side) end