Regenerative Energiequellen wie Wind, Sonne und Biokraft helfen dir, das Ölzeitalter zu verlassen. Mit modernen Technologien und intelligenten Maschinen machst du dich auf in die Zukunft.
Eine Windkraftanlage liefern immer dann Strom, wenn Wind vorhanden ist. Im Spiel gibt es keinen Wind, aber die Mod simuliert dies dadurch, dass sich nur morgens (5:00 - 9:00) und abends (17:00 - 21:00) die Windräder drehen. Eine Windkraftanlage liefert nur dann Strom, wenn sie an einer geeigneten Stelle aufgestellt ist.
Die TA Windkraftanlagen sind reine Offshore Anlagen, das heißt, die müssen im Meer errichtet werden. Dies bedeutet, dass Windkraftanlagen nur in einem Meer (occean) Biom errichtet werden können und dass um den Mast herum ausreichend Wasser und freie Sicht vorhanden sein müssen.
Um eine geeignete Stelle zu finden, musst du mit dem Schraubenschlüssel (TechAge Info Werkzeug) auf das Wasser klicken. Ob diese Stelle für den Mast der Windkraftanlage geeignet ist, wird dir als Chat Nachricht angezeigt.
Der Strom muss vom Rotor-Block durch den Mast nach unten geführt werden. Dazu zuerst die Stromleitung nach oben ziehen und das Stromkabel dann mit TA4 Säulenblöcke "verputzen". Unten kann eine Arbeitsplattform errichtet werden. Der Plan rechts zeigt den Aufbau im oberen Teil.
Der Windkraftanlagenblock (Rotor) ist das Herzstück der Windkraftanlage. Dieser Block muss oben auf den Mast gesetzt werden. Idealerweise auf Y = 15, dann bleibst du noch gerade innerhalb eines Map-/Forceload-Blocks.
Beim Starten der Windkraftanlage werden alle Bedingungen für den Betrieb der Windkraftanlage überprüft. Sofern alle Bedingungen erfüllt sind, erscheinen auch automatisch die Rotorblätter (Flügel). Anderenfalls wird eine Fehlermeldung angezeigt.
Dieser Block muss an das schwarze Ende des Wind Turbinen Block gesetzt werden.
[ta4_nacelle|image]
### TA4 Wind Turbine Signal Lamp
Dieses Blinklicht ist nur für dekorative Zwecke und kann oben auf den Wind Turbinen Block gesetzt werden.
[ta4_blinklamp|image]
### TA4 Säule / Pillar
Damit wird der Mast für die Windkraftanlage gebaut. Allerdings werden diese Blöcke nicht von Hand gesetzt sondern müssen mit Hilfe der Kelle gesetzt werden, so dass die Stromleitung zur Mastspitze mit diesen Blöcken ersetzt wird (siehe unter TA Stromkabel).
Die kleinste Einheit bei einer Solaranlage sind zwei Solarmodule und ein Trägermodul. Das Trägermodul muss zuerst gesetzt werden, die zwei Solarmodule dann links und rechts daneben (nicht darüber!).
Der Plan rechts zeigt 3 Einheiten mit je zwei Solarmodulen und einem Trägermodul, über rote Kabel mit dem Wechselrichter verbunden.
Solarmodule liefern Gleichspannung, welcher nicht direkt in das Stromnetz eingespeist werden kann. Daher müssen zuerst die Solareinheiten über das rote Kabel mit dem Wechselrichter verbunden werden. Dieser besteht aus zwei Blöcken, einen für das rote Kabel zu den Solarmodulen (DC) und einen für das graue Stromkabel ins Stromnetz (AC).
Der Kartenbereich, wo die Solaranlage steht, muss komplett geladen sein. Die gilt auch für die direkte Position über dem Solarmodul, denn dort wird regelmäßig die Lichtstärke gemessen. Es empfiehlt sich daher, zuerst einen Forceload Block zu setzen, und dann innerhalb dieses Bereiches die Module zu platzieren.
Bei den Solarmodul muss darauf geachtet werden, dass diese das volle Tageslicht haben und nicht durch Blöcke oder Bäume beschattet sind. Getestet kann dies mit dem Info Tool (Schraubenschlüssel).
Das Trägermodul gibt es in zwei Bauhöhen (1m und 2m). Funktionell sind beide identisch.
Die Trägermodule können direkt aneinander gesetzt und so zu einer Modulreihe verbunden werden. Die Verbindung zum Wechselrichter oder zu anderen Modulreihen muss mit den roten Niederspannungskabeln bzw. den Niederspannungsverteilerboxen hergestellt werden.
[ta4_solarcarrier|image]
### TA4 Solar Wechselrichter / Solar Inverter
Der Wechselrichter wandelt den Solarstrom (DC) in Wechselstrom (AC) um, so dass dieser in das Stromnetz eingespeist werden kann.
### TA4 Straßenlampen-Solarzelle / Streetlamp Solar Cell
Die Straßenlampen-Solarzelle dient, wie der Name schon sagt, zur Stromversorgung einer Straßenlampe. Dabei kann eine Solarzelle zwei Lampen versorgen. Die Solarzelle speichert die Sonnenenergie tagsüber und gibt den Strom Nachts an die Lampe ab. Das bedeutet, die Lampe leuchtet nur im Dunkeln.
In der Betonhülle darf ein Fenster aus einem Obsidian Glas Block sein. Dieses muss ziemlich in der Mitte der Wand platziert werden. Durch dieses Fenster sieht man, ob der Speicher mehr als 80 % geladen ist. Im Plan rechts sieht man den Aufbau aus TA4 Wärmetauscher bestehend aus 3 Blöcken, der TA4 Turbine und dem TA4 Generator. Beim Wärmetauscher ist auf die Ausrichtung zu achten (der Pfeil bei Block 1 muss zur Turbine zeigen).
Entgegen dem Plan rechts müssen die Anschlüsse am Speicherblock auf gleicher Ebene sein (horizontal angeordnet, also nicht unten und oben). Die Rohrzuläufe (TA4 Pipe Inlet) müssen genau in der Mitte der Wand sein und stehen sich damit gegenüber. Als Röhren kommen die gelbel TA4 Röhren zum Einsatz. Die TA3 Dampfrohre können hier nicht verwendet werden.
Der Wärmetauscher besteht aus 3 Teilen, die aufeinander gesetzt werden müssen, wobei der Pfeil des ersten Blockes Richtung Turbine zeigen muss. Die Rohrleitungen müssen mit den gelben TA4 Röhren aufgebaut werden.
Der Wärmetauscher muss am Stromnetz angeschlossen werden. Über den Wärmetauscher wird der Energiespeicher wieder aufgeladen, sofern ausreichend Strom zur Verfügung steht.
Die Turbine ist Teil des Energiespeichers. Sie muss neben den Generator gesetzt und über TA4 Röhren, wie im Plan abgebildet, mit dem Wärmetauscher verbunden werden.
Die Rohrzulaufblöcke können **nicht** als normale Wanddurchbrüche verwendet werden, dazu die TA3 Rohr/Wanddurchbruch / TA3 Pipe Wall Entry Blöcke verwenden.
Strom kann mittels Elektrolyse in Wasserstoff und Sauerstoff aufgespalten werden. Auf der anderen Seite kann über eine Brennstoffzelle Wasserstoff mit Sauerstoff aus der Luft wieder in Strom umgewandelt werden.
Damit können Stromspitzen oder ein Überangebot an Strom in Wasserstoff umgewandelt und so gespeichert werden.
Die Umwandlung von Strom in Wasserstoff und zurück ist aber verlustbehaftet. Von 100 Einheiten Strom kommen nach der Umwandlung in Wasserstoff und zurück nur 95 Einheiten Strom wieder raus.
Der Reaktor dient dazu, die über den Destillationsturm oder aus anderen Rezepten gewonnenen Zutaten zu neuen Produkten weiter zu verarbeiten. Der Plan links zeigt nur eine mögliche Variante, da die Anordnung der Silos und Tanks rezeptabhängig ist.
Hinweis 2: Tanks oder Silos mit verschiedenen Inhalten dürfen nicht zu einem Leitungssystem verbunden werden. Mehrere Tanks oder Silos mit gleichem Inhalt dürfen dagegen parallel an einer Leitung hängen.
Beim Cracken werden lange Kette von Kohlenwasserstoffen unter Verwendung eines Katalysator in kurze Ketten gebrochen.
Als Katalysator dient Gibbsitpulver (wird nicht verbraucht). Damit kann Bitumen in Schweröl, Schweröl in Naphtha und Naphtha in Benzin umgewandelt werden.
Bei der Hydrierung werden einem Molekül Paare von Wasserstoffatomen hinzugefügt, um kurzkettige Kohlenwasserstoffe in lange umzuwandeln. Hier wird Eisenpulver als Katalysator benötigt (wird nicht verbraucht). Damit kann Benzin in Naphtha,
Naphtha in Schweröl und Schweröl in Bitumen umgewandelt werden.
Auf allen 4 Seiten der Dosierers können Leitungen für Eingangsmaterialien angeschlossen werden. Nach oben werden die Materialien für den Reaktor ausgegeben.
Über den Dosierer kann das Rezept eingestellt und der Reaktor gestartet werden.
Wie auch bei anderen Maschinen:
- geht der Dosierer in den standby Zustand, so fehlen ein oder mehrere Zutaten
- geht der Dosierer in den blocked Zustand, so ist Ausgangstank oder Silo voll, defekt oder falsch angeschlossen
Der Dosierer benötigt keinen Strom. Alle 10 s wird ein Rezept abgearbeitet.
Teil des Chemischen Reaktors. Muss auf den Reaktor gesetzt werden. Wenn dies nicht klappt, ggf. das Rohr an der Position darüber nochmals entfernen und neu setzen.
[ta4_fillerpipe|image]
### TA4 Reaktorständer / reactor stand
Teil des Chemischen Reaktors. Hier ist auch der Stromanschluss für den Reaktor. Der Reaktor benötigt 8 ku Strom.
Der Ständer hat zwei Leitungsanschlüsse, nach rechst für das Ausgangsprodukt und nach unten für den Abfall, wie bspw. Rotschlamm bei der Aluminiumherstellung.
[ta4_reactorstand|image]
### TA4 Reaktorsockel / reactor base
Teil des Chemischen Reaktors. Wird für den Abfluss des Abfallproduktes benötigt.
[ta4_reactorbase|image]
### TA4 Silo / silo
Teil des Chemischen Reaktors. Wird zur Aufbewahrung von Stoffen in Pulver- oder Granulatform benötigt.
Der ICTA Controller (ICTA steht für "If Condition Then Action") dient zur Überwachung und Steuerung von Maschinen. Mit dem Controller kann man Daten von Maschinen und anderen Blöcken einlesen und abhängig davon andere Maschinen und Blöcke ein-/ausschalten.
Einlesen von Maschinendaten sowie das Steuern von Blöcken und Maschinen erfolgt über sogenannte Kommandos. Für das Verständnis, wie Kommandos funktionieren, ist das Kapitel TA3 -> Logik-/Schalt-Blöcke wichtig.
Der Controller benötigt für den Betrieb eine Batterie. Das Display dient zur Ausgabe von Daten, der Signal Tower zur Anzeige von Fehlern.
[ta4_icta_controller|image]
### TA4 ICTA Controller
Der Controller arbeitet auf das Basis von ```IF <condition> THEN <action>``` Regeln. Es können bis zu 8 Regeln pro Controller angelegt werden.
Beispiele für Regeln sind:
- Wenn ein Verteiler verstopft ist (```blocked```), soll der Schieber davor ausgeschaltet werden
- Wenn eine Maschine einen Fehler anzeigt, soll dieser auf dem Display ausgegeben werden
Der Controller prüft diese Regeln zyklisch. Dazu muss pro Regel eine Zykluszeit in Sekunden (```Cycle/s```) angegeben werden (1..1000).
Für Regeln die einen on/off Eingang auswerten, bspw. von einen Schalter oder Detektor, muss als Zykluszeit 0 angegeben werden. Der Wert 0 bedeutet, dass diese Regel immer dann ausgeführt werden soll, wenn sich das Eingangssignal geändert hat, also bspw. der Button einen neuen Wert gesendet hat.
Alle Regeln sollten nur so oft wie notwendig ausgeführt werden. Dies hat zwei Vorteile:
- die Batterie des Controllers hält länger (jeder Controller benötigt eine Batterie)
- die Last für den Server ist geringer (damit weniger Lags)
Man muss für jede action eine Verzögerungszeit (```after/s```) einstellen. Soll die Aktion sofort ausgeführt werden, ist 0 einzugeben.
Der Controller hat eine eigene Hilfe und Hinweise zu allen Kommandos über das Controller-Menü.
[ta4_icta_controller|image]
### Batterie
Die Batterie muss in unmittelbarer Nähe zum Controller platziert werden, also an einer der 26 Positionen um den Controller herum.
[ta4_battery|image]
### TA4 Display
Das Display zeigt nach dem Platzieren seine Nummer an. Über diese Nummer kann das Display angesprochen werden. Auf dem Display können Texte ausgegeben werden, wobei das Display 5 Zeilen und damit 5 unterschiedliche Texte darstellen kann.
Der Lua Controller muss, wie der Name schon sagt, in der Programmiersprache Lua programmiert werden. Außerdem sollte man etwas Englisch können (oder Google bemühen), denn die Anleitung dazu gibt es nur in Englisch:
Auch der Lua Controller benötigt eine Batterie. Die Batterie muss in unmittelbarer Nähe zum Controller platziert werden, also an einer der 26 Positionen um den Controller herum.
[ta4_lua_controller|image]
### TA4 Lua Server
Der Server dient zur zentralen Speicherung von Daten von mehreren Lua Controllern. Es speichert auch die Daten über einen Server-Neustart hinweg.
- Über `state = $send_cmnd(<num>, "state")` kann der Status der Kiste abgefragt werden. Mögliche Antworten sind: "empty", "loaded", "full"
- Über `name, action = $send_cmnd(<num>, "action")` kann die letzte Spieleraktion abgefragt werden. `name` ist der Spielername, Als `action` wird zurückgeliefert: "put", "take", "f1", "f2".
- Über `stacks = $send_cmnd(<num>, "stacks")` kann der Inhalt der Kiste ausgelesen werden. Siehe dazu: https://github.com/joe7575/techage/blob/master/manuals/ta4_lua_controller_EN.md#sensor-chest
- Über `$send_cmnd(<num>, "text", "press both buttons and\nput something into the chest")` kann der Text im Menü der Sensor Kiste gesetzt werden.
Über die Checkbox "Erlaube öffentlichen Zugriff" kann eingestellt werden, ob die Kiste von jedem genutzt werden darf, oder nur von Spielern die hier Zugriffsrechte haben.
Beim TA4 Taster/Schalter hat sich nur das Aussehen geändert. Die Funktionalität ist gleich wie beim TA3 Taster/Schalter.
[ta4_button|image]
### TA4 Spieler Detektor / Player Detector
Beim TA4 Spieler Detektor hat sich nur das Aussehen geändert. Die Funktionalität ist gleich wie beim TA3 Spieler Detektor.
[ta4_playerdetector|image]
### TA4 Zustandssammler / State Collector
[ta4_collector|image]
Der Zustandssammler fragt der Reihe nach alle konfigurierten Maschinen nach dem Status ab. Wenn eine der Maschinen einen vorkonfigurierte Status erreicht oder überschritten hat, wird ein "on" Kommando gesendet. Damit können bspw. vom einem Lua Controller aus sehr einfach viele Maschinen auf Störungen überwacht werden.
TA4 beinhaltet eine Reihe von leistungsstarken Lampen, die eine bessere Ausleuchtung ermöglichen oder Spezialaufgaben übernehmen.
### TA4 LED Pflanzenlampe / TA4 LED Grow Light
Die TA4 LED Pflanzenlampe ermöglicht ein schnelles und kräftiges Wachstum aller Pflanzen aus der `farming` Mod. Die Lampe beleuchtet ein 3x3 großes Feld, so dass sich damit auch Pflanzen unter Tage anbauen lassen.
Die Lampe muss mit einem Abstand von einem Block über dem Boden in der Mitte des 3x3 Feldes platziert werden.
Zusätzlich kann die Lampe auch zur Blumenzucht genutzt werden. Wird die Lampe über ein 3x3 großes Blumenbeet aus "Garden Soil" (Mod `compost`) platziert, so wachsen dort die Blumen ganz von selbst (über und unter Tage).
Abernten kann man die Blumen mit den Signs Bot, der auch über ein entsprechendes Zeichen verfügt, das vor das Blumenfeld gestellt werden muss.
Die TA4 LED Straßenlampe ist eine Lampe mit besonders starker Ausleuchtung. Die Lampe besteht aus dem Lampengehäuse, Lampenarm und Lampenmast Blöcken.
Der Strom muss von unten durch den Mast nach oben zum Lampengehäuse geführt werden. Dazu zuerst die Stromleitung nach oben ziehen und das Stromkabel dann mit Lampenmast Blöcken "verputzen".
Für manche Rezepte wird Wasser benötigt. Das Wasser muss mit einer Pumpe aus dem Meer (Wasser auf y = 1) gepumpt werden. Ein "Pool" aus ein paar Wasserblöcken ist dafür nicht ausreichend!
Dazu muss der Wassereinlass-Block ins Wasser gesetzt und über Röhren mit der Pumpe verbunden werden. Wird der Block ins Wasser gesetzt, so muss darauf geachtet werden, dass sich unter dem Block Wasser befindet (Wasser muss mindestens 2 Blöcke tief sein).
Die Funktion entspricht grundsätzlich der von TA2/TA3. Zusätzlich kann aber über ein Menü konfiguriert werden, welche Gegenstände aus einer TA4 Kiste geholt und weiter transportiert werden sollen.
Als Nummer sind Werte von 1 bis 12 zulässig. Danach geht der Schieber wieder in den `stopped` Mode und sendet ein "off" Kommando zurück an den Sender des "pull" Kommandos.
Zusätzlich besitzt die TA4 Kiste ein Schatteninventar zur Konfiguration. Hier können bestimmte Speicherplätze mit einem Item vorbelegt werden. Vorbelegte Speicherplätze werden beim Füllen nur mit diesen Items belegt. Zum Leeren eines vorbelegten Speicherplatzes wird ein TA4 Schieber oder TA4 Injektor mit entsprechender Konfiguration benötigt.
Die TA4 8x2000 Kiste hat kein normales Inventar wir andere Kisten, sondern verfügt über 8 Speicher, wobei jeder Speicher bis zu 2000 Items einer Sorte aufnehmen kann. Über die orangefarbenen Taster können Items in den Speicher verschoben bzw. wieder heraus geholt werden. Die Kiste kann auch wie sonst üblich mit einem Schieber (TA2, TA3 oder TA4) gefüllt bzw. geleert werden.
Wird die Kiste mit einem Schieber gefüllt, so füllen sich alle Speicherplätze von links nach rechts. Sind alle 8 Speicher voll und können keine weiteren Items hinzugefügt werden, so werden weitere Items werden abgewiesen.
Mehrere TA4 8x2000 Kisten können zu einer großen Kiste mit mehr Inhalt verbunden werden. Dazu müssen die Kisten in einer Reihe hintereinander gesetzt werden.
Zuerst muss die Front-Kiste gesetzt werden, dann werden die Stapel-Kisten mit gleicher Blickrichtung dahinter gesetzt (alle Kisten haben die Front in Richtung Spieler). Bei 2 Kisten in Reihe erhöht sich die Größe auf 8x4000, usw.
Die angereihten Kisten können nun nicht mehr entfernt werden. Um die Kisten wieder abbauen zu können, gibt es zwei Möglichkeiten:
- Die Frontkiste leeren und entfernen. Damit wird die nächste Kiste entsperrt und kann entfernt werden.
- Die Frontkiste soweit leeren dass alle Speicherplätzen maximal 2000 Items beinhalten. Damit wird die nächste Kiste entsperrt und kann entfernt werden.
Die Kisten haben eine "Reihenfolge" Checkbox. Wird diese Checkbox aktiviert, werden die Speicherplätze durch einen Schieber nicht mehr vollständig entleert. Das letzte Item verbleibt als Vorbelegung in dem Speicherplatz. Damit ergibt sich eine feste Zuordnung von Items zu Speicherplätzen.
Die Kiste kann nur von den Spielern genutzt werden, die an diesem Ort auch bauen können, also Protection Rechte besitzen. Es spielt dabei keine Rolle, wer die Kiste setzt.
Der Recycler ist eine Maschine, die alle Techage Rezepte rückwärts abarbeitet, also Maschinen und Blöcke wieder in die Bestandteile zerlegen kann. Die Maschine kann so ziemlich alle Techage und Hyperloop Blöcke zerlegen.
Der TA4 Laser dient zur kabellosen Stromübertagung. Dazu sind zwei Blöcke notwendig: TA4 Laserstrahl Sender und TA4 Laserstrahl Empfänger. Zwischen beiden Blöcken muss sich eine Luftstrecke befinden, so dass der Laserstrahl vom Sender bis zum Empfänger aufgebaut werden kann.
Zuerst muss der Sender platziert werden. Dieser schaltet sofort den Laserstahls ein und zeigt damit mögliche Positionen des Empfängers an. Mögliche Positionen für den Empfänger werden auch über eine Chat-Nachricht ausgegeben. Mit dem Laser lassen sich Strecken bis 96 Blöcke überbrücken.
Ist die Verbindung aufgebaut (es muss dazu noch kein Strom fließen), wird dies über den Info-Text des Senders und auch des Empfängers angezeigt.